

Available online at www.sciencedirect.com



Journal of Organometallic Chemistry 682 (2003) 196-203



www.elsevier.com/locate/jorganchem

# The products formed in the reaction of $MeAlCl_2$ with alcohols (1:1)

Sławomir Szumacher, Antoni R. Kunicki\*, Izabela Madura, Janusz Zachara

Department of Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, Koszykowa 75, 00-664 Warsaw, Poland

Received 28 April 2003; received in revised form 3 July 2003; accepted 3 July 2003

#### Abstract

The products formed in the reaction (1:1) of MeAlCl<sub>2</sub> with alcohols ROH, where R = Et, <sup>*i*</sup>Pr, <sup>*n*</sup>Bu, <sup>*i*</sup>Bu, <sup>*i*</sup>Bu, <sup>*i*</sup>Bu, <sup>*i*</sup>BuCH<sub>2</sub> were investigated. Depends on the alcohol used the formation of  $[Cl_2Al(\mu-OR)_2]_2AlCl$  or/and  $[Cl_2Al(\mu-OR)_2]_3Al$  except dimeric or/and trimeric ROAlCl<sub>2</sub> were found. The products have been characterized by NMR and cryoscopically in benzene. The crystal structures of  $[Cl_2Al(\mu-O^nBu)_2]_3Al$  and  $[Cl_2Al(\mu-OCH_2^{\prime}Bu)]_2$  were determined by X-ray diffraction studies. © 2003 Elsevier B.V. All rights reserved.

Keywords: Alkoxydichloroaluminum; Aluminum alkoxides; NMR; X-ray diffraction

## 1. Introduction

Although the compounds of general formulae ROAlCl<sub>2</sub> are known since many years, their chemistry and structure still remain unexplored [1]. The structure of MeOAlCl<sub>2</sub> has been determined in solid state by Xray method only just few years ago [2]. The methoxyaluminum species was found to be a trimer with nonplanar six-membered Al<sub>3</sub>O<sub>3</sub> ring structure. On the other hand compound PhOAlCl<sub>2</sub> directly after synthesis is a dimer what was established from spectroscopic and cryoscopic measurements [3]. After 24 h a trimeric form was found as well. The presence of methyl groups in ortho positions of the aromatic ring in 2,6-Me<sub>2</sub>- $C_6H_3OAlCl_2$  leads to the formation of a dimer only with bridging oxygen atom [4], while the substitution of phenyl ring by tert-butyl groups in ortho positions in  $2,6^{-t}Bu_2-4-MeC_6H_3OAl(Cl)Me$  results in dimer with bridging chlorine atoms [5].

The common method to synthesize (alkoxy)dichloroaluminum derivatives is the controlled reaction of appropriate alcohol with organoaluminum compounds of the general formulae RAICl<sub>2</sub>. However, due to

0022-328X/03/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0022-328X(03)00782-4

unselectivity of the reaction a mixture of products can be formed [6]. We have reported earlier that the tetrametallic complex  $[Cl_2Al(\mu-OEt)_2]_3Al$  is a main product isolated by crystallization from the reaction of MeAlCl<sub>2</sub> and EtOH (1:1) [7], while the expected EtOAlCl<sub>2</sub> appears as an intermediate only. It is worth noting that the tetrametallic aluminum compounds can be used as precursors to Al<sub>2</sub>O<sub>3</sub> [8].

In this paper we described the results of our systematic studies of the products formed in the reaction of  $MeAlCl_2$  with primary, secondary and tertiary alcohols at 1:1 molar ratio. We undertook attempts to recognize the influence of the nature of the alcohols on the products of the studied reactions. The products were characterized by NMR studies, cryoscopic molecular weight measurements in solution and elemental analysis. The structures of two obtained compounds have been analyzed by X-ray method.

## 2. Results and discussion

The reaction of MeAlCl<sub>2</sub> with equimolar amount of alcohols ROH, where R = Et, <sup>*i*</sup>Pr, <sup>*n*</sup>Bu, <sup>*i*</sup>Bu, <sup>*s*</sup>Bu, <sup>*t*</sup>Bu, CH<sup>*t*</sup><sub>2</sub>Bu results in the evolution of a gas, presumably methane and formation of the appropriate (alkoxy)dichloroaluminum compound (Eq. (1)).

<sup>\*</sup> Corresponding author. Tel.: +48-22-6605581; fax: +48-22-6605462.

E-mail address: kunicki@ch.pw.edu.pl (A.R. Kunicki).

 $n\text{MeAlCl}_2 + n\text{ROH} \rightarrow (\text{ROAlCl}_2)_n + n\text{MeH}$  (1)

n = 2 or 3

R = Et1a $R = {}^{i}Pr$ 2a $R = {}^{n}Bu$ 3a $R = {}^{i}Bu$ 4a $R = {}^{s}Bu$ 5a $R = {}^{t}Bu$ 6a $R = CH_{2}^{t}Bu$ 7a

The formed compounds ROAlCl<sub>2</sub> can undergo conversion reaction to trimetallic aluminum compound  $[Cl_2Al(\mu-OR)_2]_2AlCl$  (b) or/and tetrametallic aluminum one  $[Cl_2Al(\mu-OR)_2]_3Al$  (c) (Scheme 1). On the contrary to the chloroalkoxypolymetallic aluminum compounds the trimetallic and tetrametallic alkyl derivatives of aluminum only are well structurally characterized in literature [9,10].

### 2.1. Products of reaction MeAlCl<sub>2</sub> with EtOH

<sup>1</sup>H-NMR studies of the reaction mixture Eq. (1) just after synthesis show that it contains compound 1a and tetrametallic aluminum compound [Cl<sub>2</sub>Al(µ-OEt)<sub>2</sub>]<sub>3</sub>Al (1c), with the molar ratio 20:1, respectively. Additionally, the spectra imply the presence of dimeric and trimeric forms of EtOAlCl<sub>2</sub> (1a). Solution molecular weight measurements allowed to determine 1a association degree (n = 2.8) and to assign the proton resonance lines in <sup>1</sup>H-NMR spectra to dimer and trimer. The <sup>27</sup>Al-NMR spectra show signals at 93 ppm assigned to fourcoordinate aluminum atoms in 1a and 1c while the signal at 6 ppm corresponds to six-coordinate aluminum center in 1c. Attempts to isolate pure products by crystallization resulted in conversion of 1a to 1c, and compound 1c was separated with 60% yield. The crystal structure of 1c was determined by X-ray method earlier [7]. After crystallization of  $1c^{27}$ Al-NMR spectra of the lye showed the new third signal of aluminum atom at 44 ppm. It suggests the chloroethoxy compound 1b with five coordinate aluminum atom is formed as well. We could not however isolate this compound.



```
Scheme 1.
```

# 2.2. Products of reaction MeAlCl<sub>2</sub> with <sup>i</sup>PrOH

The reaction of MeAlCl<sub>2</sub> with <sup>*i*</sup>PrOH Eq. (1) proceeds with the formation of dimeric <sup>*i*</sup>PrOAlCl<sub>2</sub> (**2a**) and  $[Cl_2Al(\mu-O^iPr)_2]_2AlCl$  (**2b**). The integration of the signals in <sup>1</sup>H-NMR spectra of the post-reaction mixture shows 2:3 molar ratio of **2a** to **2b**. <sup>27</sup>Al-NMR spectra proof the presence of both four- and five-coordinate aluminum atoms in the mixture. The compound **2b** was isolated by crystallization with 43% yield and spectrally characterized. It should be noted, that **2b** was synthesized before in the reaction of AlCl<sub>3</sub> with Al(O<sup>*i*</sup>Pr)<sub>3</sub> and its structure determined by X-ray method [11].

## 2.3. Products of reaction MeAlCl<sub>2</sub> with <sup>n</sup>BuOH

The reaction of MeAlCl<sub>2</sub> with <sup>*n*</sup>BuOH Eq. (1) leads initially to the formation of dimeric and trimeric forms of <sup>*n*</sup>BuOAlCl<sub>2</sub> (**3a**) and of tetrametallic aluminum complex [Cl<sub>2</sub>Al( $\mu$ -O<sup>*n*</sup>Bu)<sub>2</sub>]<sub>3</sub>Al (**3c**), with the molar ratio 24:1, respectively. The relative intensity of proton signals in <sup>1</sup>H-NMR spectra shows 3:10 molar ratio of dimer to trimer **3a**, respectively. No changes in the reaction mixture stored for 70 days at room temperature were observed. Similarly to ethoxy derivative **1a**, the crystallization at -15 °C proceeds with conversion reaction of <sup>*n*</sup>BuOAlCl<sub>2</sub> giving compound **3c** with 47% yield.

The compound 3c was characterized spectroscopically and by X-ray methods. The molecular structure with atom numbering scheme is shown in Fig. 1. The selected bonds lengths and angles are collected in Table 1. The molecule of 3c shows  $C_2$  symmetry and resides on the crystallographic twofold axis with two aluminum centers Al(1) and Al(2) located in special positions (4*e* according Wyckoff notation). The studied compound contains the central six-coordinate aluminum atom with three four-coordinate aluminum atoms occupying the



Fig. 1. An ORTEP diagram of  $[Cl_2Al(\mu-O^n Bu)_2]_3Al$  (3c). Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms are omitted for clarity.

Table 1 Selected bond lengths (Å) and bond angles (°) for  $[(Cl_2Al)_3(\mu\text{-}O^{\prime\prime}Bu)_6]Al~(3c)^{a}$ 

| Bond lengths         |            |                      |            |
|----------------------|------------|----------------------|------------|
| Al(1)-O(2)           | 1.906(2)   | Al(1)-O(1)           | 1.907(2)   |
| Al(1)-O(3)           | 1.910(2)   | Al(2)-O(1)           | 1.767(2)   |
| Al(2)-Cl(1)          | 2.1000(14) | Al(3)-O(2)           | 1.772(2)   |
| Al(3)-O(3)           | 1.775(2)   | Al(3)-Cl(2)          | 2.0973(17) |
| Al(3)-Cl(3)          | 2.1062(17) | O(1) - C(1)          | 1.452(4)   |
| Bond angles          |            |                      |            |
| O(1')-Al(2)-O(1)     | 83.25(14)  | Cl(1')-Al(2)-Cl(1)   | 111.24(10) |
| O(2)-Al(3)-O(3)      | 83.25(10)  | Cl(2)-Al(3)-Cl(3)    | 112.80(7)  |
| Al(2) - O(1) - Al(1) | 100.38(10) | Al(3) - O(2) - Al(1) | 100.38(10) |
| Al(3)-O(3)-Al(1)     | 100.11(10) |                      |            |
|                      |            |                      |            |

<sup>a</sup> Symmetry transformation used to generate equivalent atoms labeled with prime: -x, y, -z+1/2.

periphery. The geometry at the central aluminum Al(1) atom can be described as distorted octahedral with Al– O(bridging) distances almost equal [1.906(2)–1.910(2) Å]. The four-coordinate aluminum Al(2) and Al(3) atoms form much shorter Al–O bonds ranging from 1.767(2) to 1.775(2) Å. The Al<sub>2</sub>( $\mu$ -O)<sub>2</sub> rings feature O– Al(1)–O angles of ca. 76°. The angles formed by fourcoordinate aluminum and two bridging oxygen atoms are somewhat more obtuse and are equal to 83.3(1)°. Detailed analysis of the remaining bond distances and angles indicates that the central (Cl<sub>2</sub>AlO<sub>2</sub>)<sub>3</sub>Al core displays approximate  $D_3$  point group symmetry. The observed geometry of **3c** is in very good agreement with the ones found for analogous previously reported tetrametallic ethoxy complex **1c** [7].

Lowering quickly the temperature of the mixture obtained from the reaction of MeAlCl<sub>2</sub> with <sup>*n*</sup>BuOH Eq. (1) results in precipitation of a solid. <sup>1</sup>H-NMR spectra show, that the solid contains compounds **3a**, **3c** and **3b** in molar ratio 16:3:1, respectively. The <sup>27</sup>Al-NMR spectra provide the evidence for existing not only the trimetallic aluminum complex  $[Cl_2Al(\mu-O^nBu)_2]_2AlCl$  (**3b**) but also  $[Cl_2Al(\mu-O^nBu)_2]_2AlO^nBu$ . The resonance lines of five coordinate aluminum atoms at 40 and 43 ppm were found.

# 2.4. Products of reaction MeAlCl<sub>2</sub> with <sup>i</sup>BuOH

The formation of <sup>*i*</sup>BuOAlCl<sub>2</sub> (**4a**) quantitatively was observed just after reaction of MeAlCl<sub>2</sub> with <sup>*i*</sup>BuOH Eq. (1). The solution molecular weight measurements (n = 2.14) and <sup>1</sup>H-NMR spectra indicate an equilibrium between dimeric and trimeric forms of **4a**, whereas after 7 days the <sup>1</sup>H-NMR spectra do not show the presence of the dimer. Additionally in the spectra we have found the compound [Cl<sub>2</sub>Al( $\mu$ -O<sup>*i*</sup>Bu)<sub>2</sub>]<sub>2</sub>AlCl (**4b**) (molar ratio **4b**:**4a** equal to 1:13), as well. The <sup>27</sup>Al-NMR spectrum confirmed the presence of five-coordinate aluminum atom with the signal at 45 ppm.

## 2.5. Products of reaction MeAlCl<sub>2</sub> with <sup>s</sup>BuOH

The evidence for formation of dimer <sup>s</sup>BuOAlCl<sub>2</sub> (**5a**) in reaction of MeAlCl<sub>2</sub> with <sup>s</sup>BuOH was found from <sup>1</sup>Hand <sup>13</sup>C-NMR spectra and solution molecular weight measurements. The degree of association of **5a** was found to be 2.0 and did not change after 7 days. <sup>1</sup>H-NMR spectrum recorded however 50 days later show very low intensities set of resonance lines which can be attributed to [Cl<sub>2</sub>Al( $\mu$ -O<sup>s</sup>Bu)<sub>2</sub>]<sub>2</sub>AlCl (**5b**). The spectrum is complex and not very informative due to chiral carbon of *sec*-butyl group and possibilities of the formation of **5b** diastereoisomers. <sup>27</sup>Al-NMR spectra show resonance lines at 93 and 44 ppm indicating the existence of **5b** in the solution.

### 2.6. Products of reaction $MeAlCl_2$ with <sup>t</sup>BuOH

In the reaction of MeAlCl<sub>2</sub> and <sup>*t*</sup>BuOH the <sup>*t*</sup>BuOAlCl<sub>2</sub> (**6a**) was formed Eq. (1). At room temperature the compound **6a** is unstable both in the solution and the solid state. It decomposes slowly with gas evolution forming insoluble in common solvents solid. Compound **6a** was isolated in 45% yield by crystallization and characterized by NMR (<sup>1</sup>H, <sup>13</sup>C, <sup>27</sup>Al) spectroscopy. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of the compound show a one signal of <sup>*t*</sup>BuO group. The <sup>27</sup>Al-NMR spectra display signal of four coordinate aluminum atom at 90 ppm implying the presence of the oligomeric, probably dimeric form.

## 2.7. Products of reaction MeAlCl<sub>2</sub> with <sup>t</sup>BuCH<sub>2</sub>OH

The <sup>1</sup>H-NMR spectra of the post-reaction mixture show that <sup>*t*</sup>BuCH<sub>2</sub>OAlCl<sub>2</sub> (**7a**) is the only product formed directly after mixing of <sup>*t*</sup>BuCH<sub>2</sub>OH with MeAlCl<sub>2</sub> (1:1). The compound **7a** was isolated by crystallization. After 50 days of storing the post-reaction mixture at room temperature the NMR spectroscopy provided evidence of formation of trimetallic aluminum complex [Cl<sub>2</sub>Al( $\mu$ -O<sup>*t*</sup>Bu)<sub>2</sub>]<sub>2</sub>AlCl (**7b**) as well. Calculations based on the integration of the proton signals in <sup>1</sup>H-NMR reveal the molar ratio of **7a** to **7b** to be equal 50:1. <sup>27</sup>Al-NMR spectra show new signal at 43 ppm attributed to five coordinate aluminum atom of **7b**.

We have tried to separate by crystallization **7b** but crystals of **7a** precipitated only. The X-ray crystallographic analysis of **7a** reveals that the compound crystallizes in the monoclinic space group  $P2_1/c$ . The structure consists of a discrete centrosymmetric 'Bu-CH<sub>2</sub>O bridged dimers. Selected bond distances and angles are presented in Table 2. The molecular structure of the [Cl<sub>2</sub>Al( $\mu$ -OCH<sup>t</sup><sub>2</sub>Bu)]<sub>2</sub> (**7a**) is shown in Fig. 2.

Table 2 Selected bond lengths (Å) and bond angles (°) for [( $\mu$ -O'Bu-CH<sub>2</sub>)AlCl<sub>2</sub>]<sub>2</sub> (7a) <sup>a</sup>

| Bond lengths          |            |                  |            |
|-----------------------|------------|------------------|------------|
| Al(1)-Cl(1)           | 2.0556(19) | Al(1)-Cl(2)      | 2.0488(19) |
| Al(1)-O(1)            | 1.772(3)   | Al(1)-O(1')      | 1.776(3)   |
| O(1)-C(1)             | 1.453(4)   | Al(1)-Al(1')     | 2.668(3)   |
| Bond angles           |            |                  |            |
| Cl(2) - Al(1) - Cl(1) | 117.00(9)  | O(1)-Al(1)-O(1') | 82.50(13)  |
| C(1) - O(1) - Al(1)   | 124.8(2)   | C(1)-O(1)-Al(1') | 131.1(2)   |
| Al(1)-O(1)-Al(1')     | 97.50(13)  |                  |            |
|                       |            |                  |            |

<sup>a</sup> Atoms labeled with prime belong to the centrosymmetric counterpart of the dimer.



Fig. 2. An ORTEP view of  $[Cl_2Al(\mu-O'BuCH_2)]_2$  (7a) showing the intermolecular C-H···Cl (dashed lines) and C-H···O (dotted lines) hydrogen bonds. Thermal ellipsoids are drawn at 50% probability.

The four-membered central  $Al_2(\mu-O)_2$  ring is planar and the Al–O bond lengths are, within experimental error, the same [1.772(3) and 1.776(3) Å], and within the range expected for the four-coordinate aluminum in

Table 3

The products identified in the studied reactions of MeAlCl<sub>2</sub> with various alcohols

 $Cl_2Al(\mu$ -OR)<sub>2</sub>Al cores, cf. for example, those found for 1c and 3c. The aluminum atoms display a distorted tetrahedral coordination sphere. The distortion is mainly caused by the constraints in the four-membered  $Al_2(\mu-O)_2$  bridging ring and the most acute angle, O(1)-Al(1)–O(1'), is equal  $82.50(13)^\circ$ . The alkyl group of the alkoxy ligand adopts asymmetrical conformations with respect to the central ring, with the C(1) atom significantly moved [0.520(4) Å] out of the Al<sub>2</sub>O<sub>2</sub> plane. A detailed inspection of intra- and intermolecular contacts does reveal that two hydrogen atoms of the <sup>t</sup>Bu group are involved in the weak intramolecular hydrogen bonding interactions with Cl(1) and O(1) atoms (dashed and dotted lines in Fig. 2). The uncorrected C(5)- $H(52) \cdots Cl(1')$  and  $C(4) - H(42) \cdots O(1)$  distances and angles are equal 2.85, 2.54 Å, and 163 and 101°, respectively. Taking into account the orientation of the <sup>t</sup>Bu group and relatively low anisotropic thermal parameters  $U_{ii}$  of both C(4) and C(5) carbon atoms, there is evidence that dimeric structure is additionally stabilized by a pair of weak intramolecular hydrogen bonds.

# 3. Conclusions

The obtained results indicate that the tri- and tetrametallic aluminum compounds appear in the reaction of MeAlCl<sub>2</sub> with studied alcohols via conversion of ROAlCl<sub>2</sub> probably in the sequence of reactions Eqs. (2)-(5).

$$4\text{ROAlCl}_2 \rightarrow [\text{Cl}_2\text{Al}(\mu\text{-OR})_2]_2\text{AlCl} + 2\text{AlCl}_3$$
(2)

$$5\text{ROAlCl}_2 \rightarrow [\text{Cl}_2\text{Al}(\mu\text{-OR})_2]_3\text{Al} + 2\text{AlCl}_3 \tag{3}$$

| in the studied reactions of MeAlC <sub>12</sub> with various alcohols |                      |                      |                                                            |                                                          |  |
|-----------------------------------------------------------------------|----------------------|----------------------|------------------------------------------------------------|----------------------------------------------------------|--|
| ROH                                                                   | dimer                | trimer               | trimetallic comp.                                          | tetrametallic comp.                                      |  |
|                                                                       | $[Cl_2Al(\mu-OR)]_2$ | $[Cl_2Al(\mu-OR)]_3$ | [Cl <sub>2</sub> Al(µ-OR) <sub>2</sub> ] <sub>2</sub> AlCl | [Cl <sub>2</sub> Al(µ-OR) <sub>2</sub> ] <sub>3</sub> Al |  |
| но                                                                    | Х                    | Х                    | Х                                                          | Х                                                        |  |
| но                                                                    | Х                    | Х                    | Х                                                          | Х                                                        |  |
| НО                                                                    | Х                    | Х                    | х                                                          |                                                          |  |
| но                                                                    | Х                    |                      | х                                                          |                                                          |  |
| но                                                                    | Х                    |                      | х                                                          |                                                          |  |
| но-                                                                   | х                    |                      | Х                                                          |                                                          |  |
| но                                                                    | Х                    |                      |                                                            |                                                          |  |

 $3[Cl_2Al(\mu-OR)_2]_3Al$ 

$$\rightarrow [Cl_2Al(\mu - OR)_2]_2AlCl + [Cl_2Al(\mu - OR)_2]_2AlOR$$
(4)  
2[Cl\_2Al(\mu - OR)\_2]\_2AlCl  
$$\rightarrow [Cl_2Al(\mu - OR)_2]_3Al + 2ROAlCl_2$$
(5)

Based on the obtained results we have found that the character of RO group is a key feature in the conversion to oligometallic complexes as well as in association forms of  $ROAlCl_2$ . It was shown schematically in Table 3.

The alkoxyaluminum compounds derived from primary alcohols with straight-chain alkyls (Et, <sup>*n*</sup>Bu) convert to tri- and tetrametallic aluminum compounds. For (alkoxy)chloroaluminum derivatives obtained from secondary alcohols (<sup>*i*</sup>Pr, <sup>*s*</sup>Bu) and primary ones with branched  $\beta$  carbon (<sup>*i*</sup>Bu, CH<sup>*t*</sup><sub>2</sub>Bu) a trimetallic aluminum form is favored. <sup>*t*</sup>BuOAlCl<sub>2</sub> derived from tertiary alcohol does not transform to oligoaluminum complexes but decomposes slowly at room temperature.

A degree of association of studied ROAlCl<sub>2</sub> compounds depends on the hindering effect of alkoxy RO group. For compounds derived from primary alcohols (Et, "Bu, and 'Bu) dimer-trimer equilibrium was observed. For alkoxyaluminum derivatives obtained from secondary (<sup>i</sup>Pr, <sup>s</sup>Bu), and tertiary (<sup>t</sup>Bu) alcohols as well as primary ones with branched  $\beta$  carbon (CH<sub>2</sub><sup>t</sup>Bu) a dimeric form is favored. The influence of steric effect of substituents bonded to oxygen atom in ROAlMe<sub>2</sub> on association degree was studied widely by Barron and co-workers earlier [12].

#### 4. Experimental

#### 4.1. General remarks

All compounds were prepared and manipulated under an argon atmosphere using standard Schlenk techniques. All solvent used (hexane, benzene, toluene) were dried over benzophenone ketyl. Dichloromethylaluminum were purchased from Aldrich as 1.0 M solution in hexane and used without further purification. Ethyl alcohol was dried by refluxing over magnesium promoted with iodine. Other alcohols were distilled under Ar over Na before use.

<sup>1</sup>H-, <sup>13</sup>C- and <sup>27</sup>Al-NMR measurements were performed on Varian–VXR 300 (300 MHz) or Varian– Gemini (<sup>1</sup>H, 199.971; <sup>13</sup>C, 50.283; <sup>27</sup>Al, 52.106 MHz). The proton chemical shifts were referenced to C<sub>6</sub>D<sub>5</sub>H ( $\delta = 7.15$  ppm), the carbon resonances to C<sub>6</sub>D<sub>6</sub> ( $\delta = 128$ ppm) and the <sup>27</sup>Al-NMR spectra to Al(H<sub>2</sub>O)<sub>6</sub><sup>3+</sup> in benzene. Molecular weight was determined by cryoscopic measurements in benzene solution.

#### 4.2. The reaction of MeAlCl<sub>2</sub> with EtOH

To solution of MeAlCl<sub>2</sub> (1.920 g, 17 mmol) in 80 ml of hexane cooled to 0 °C, ethyl alcohol (0.785 g, 17 mmol) in 60 ml of hexane was slowly added from funnel. During addition the gas evolution was observed. The reaction mixture was allowed to warm up to room temperature (r.t.) and stirred 24 h to give light-yellow solution. After decantation and solvent evaporation in vacuo, clear, viscous liquid (2.299 g, yield 95%) was obtained. The viscous liquid contained mainly EtOAlCl<sub>2</sub>.

Anal. for  $C_2H_5AlCl_2O$ , Calc. (Found): C, 16.80 (16.49); H, 3.53 (3.59); Al, 18.88 (18.21); Cl, 49.60 (48.25)%.  $M_w$  (cryoscopically in benzene): 402, Calc. for  $C_4H_{10}Al_2Cl_4O_2$  (**1a** dimer) 285.89, Calc. for  $C_6H_{15}Al_3$ -Cl<sub>6</sub>O<sub>3</sub> (**1a** trimer) 428.84, Calc. for tetrametallic aluminum compound  $C_{12}H_{30}Al_4Cl_6O_6$  (**1c**) 591.00.

<sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>, ppm): (EtOAlCl<sub>2</sub>)<sub>2</sub>  $\delta$  1.07 (t, <sup>3</sup>*J* = 7.2 Hz, 3H, CH<sub>3</sub>), 3.62 (q, <sup>3</sup>*J* = 7.2 Hz, 2H, CH<sub>2</sub>); (EtOAlCl<sub>2</sub>)<sub>3</sub>  $\delta$  1.12 (t, <sup>3</sup>*J* = 7.0 Hz, 3H, CH<sub>3</sub>), 4.10 (q, <sup>3</sup>*J* = 7.0 Hz, 2H, CH<sub>2</sub>). <sup>27</sup>Al-NMR: 93 ppm ( $\omega_{1/2}$  = 260 Hz).

Crystallization from the reaction mixture at -15 °C leads to precipitation of [Cl<sub>2</sub>Al( $\mu$ -OEt)<sub>2</sub>]<sub>3</sub>Al (**1c**) as white crystals with 60% yield (1.005 g).

Anal. for C<sub>12</sub>H<sub>30</sub>Al<sub>4</sub>Cl<sub>6</sub>O<sub>6</sub>, Calc. (Found): C, 24.39 (24.42); H, 5.12 (5.01); Al, 18.26 (18.33); Cl, 35.99 (36.14)%.  $M_{\rm w}$  (cryoscopically in benzene): 587, Calc. 591.00. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.23 (t, <sup>3</sup>J = 7.2 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>), 3.52 (dq, <sup>2</sup>J = 10.8 Hz, <sup>3</sup>J = 7.2 Hz, 1H, HCH), 4.04 (dq, <sup>2</sup>J = 10.8 Hz, <sup>3</sup>J = 7.2 Hz, 1H, HCH). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  17.47 (CH<sub>3</sub>CH<sub>2</sub>), 62.98 (CH<sub>3</sub>CH<sub>2</sub>). <sup>27</sup>Al-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  93 ( $\omega_{1/2}$  = 260 Hz), 5 ( $\omega_{1/2}$  = 60 Hz) ppm.

## 4.3. The reaction of $MeAlCl_2$ with <sup>i</sup> PrOH

<sup>*i*</sup>PrOH (0.781 g, 13.0 mmol) in 60 ml of toluene was added slowly to hexane solution (20 ml) of MeAlCl<sub>2</sub> (1.468 g, 13.0 mmol) cooled to 0 °C. The addition was followed by gas evolution. The reaction mixture was allowed to warm up to r.t. and stirred 24 h. The decantation and evaporation of the solvents in vacuo give white waxy solid (3.57 g) with 96% yield.

Anal. for  $C_3H_7AlCl_2O$ , Calc. (Found): C, 22.95 (26.33); H, 4.49 (5.02); Al, 17.19 (16.56); Cl, 45.17 (38.06)%.  $M_w$  (cryoscopically in benzene): 442, Calc. for  $C_6H_{14}Al_2Cl_4O_2$  (**2a** dimer) 313.95, Calc. for trimetallic aluminum compound  $C_{12}H_{28}Al_3Cl_5O_4$  (**2b**) 494.56.

(<sup>*i*</sup>PrOAlCl<sub>2</sub>)<sub>2</sub>: <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.02 (d, <sup>3</sup>J = 5.8 Hz, 6H, OCH(CH<sub>3</sub>)), 4.07 (sept, <sup>3</sup>J = 5.8 Hz, 1H, CH). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  23.19 (OCH(*CH*<sub>3</sub>), 72.17 (O*CH*(CH<sub>3</sub>)) ppm. <sup>27</sup>Al-NMR (C<sub>6</sub>D<sub>6</sub>): 91 ppm ( $\omega_{1/2}$  = 825 Hz). Crystallization from hexane at -15 °C give

201

white crystalline solid of  $[Cl_2Al(\mu-O^iPr)_2]_2AlCl$  (**2b**) with 43% yield.

Anal. for  $C_{12}H_{28}Al_3Cl_5O_4$ , Calc. (Found): C, 29.14 (28.93); H, 5.71 (5.80); Al, 16.37 (16.23); Cl, 35.84 (35.96)%.  $M_w$  (cryoscopically in benzene): 501, Calc. 494.56.

<sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.27 (d, <sup>3</sup>*J* = 6.3 HZ, 6H, OCH(*CH*<sub>3</sub>)<sub>2</sub>), 4.31 (sept, <sup>3</sup>*J* = 6.3 Hz, 1H, O*CH*(CH<sub>3</sub>)<sub>2</sub>. <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  24.77 [OCH(*CH*<sub>3</sub>)], 72.42 [O*CH*(CH<sub>3</sub>)<sub>2</sub>]. <sup>27</sup>Al-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  91 ( $\omega_{1/2}$  = 825 Hz), 43 ( $\omega_{1/2}$  = 332 Hz) ppm.

#### 4.4. Reaction of MeAlCl<sub>2</sub> with <sup>n</sup>BuOH

A solution of <sup>*n*</sup>BuOH (1.622 g, 21.9 mmol) in 60 ml of hexane was added to cooled to 0 °C solution of MeAlCl<sub>2</sub> (2.473 g, 21.9 mmol) in 80 ml of hexane. The reaction mixture was allowed to warm up to ambient temperature and stirred for 24 h to give after decantation and solvent evaporation in vacuo colorless oil (3.62 g), yield 97%. The oil contained mainly dimer and trimer of <sup>*n*</sup>BuOAlCl<sub>2</sub> (3a).

Anal. for C<sub>4</sub>H<sub>9</sub>AlCl<sub>2</sub>O, Calc. (Found): C, 28.10 (28.91); H, 5.30 (5.37); Al, 15.78 (15.03); Cl, 41.46 (40.99)%.  $M_{\rm w}$  (cryoscopically in benzene): 499, Calc. 171.00 (monomer).

<sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>): dimer  $\delta$  0.68 (t, <sup>3</sup>J = 7.4 Hz, 3H, OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.12 (m,  ${}^{3}J = 7.5$ ,  $\delta$ , 2H,  $OCH_2CH_2CH_2CH_2CH_3$ ), 1.64 (m, <sup>3</sup>J = 7.5 Hz, 2H,  $^{3}J = 7.5$  Hz,  $OCH_2CH_2CH_2CH_3)$ , 3.79 (t, 2H.  $OCH_2CH_2CH_2CH_3$ ; trimer  $\delta$  0.63 (t,  ${}^{3}J = 7.4$  Hz, 3H,  $OCH_2CH_2CH_2CH_3$ ), 1.01 (m,  $^{3}J = 7.5$  Hz, 2H,  ${}^{3}J = 7.6$  Hz,  $OCH_2CH_2CH_2CH_3), 1.72$ (m, 2H.  $^{3}J = 7.6$  Hz,  $OCH_2CH_2CH_2CH_3$ ), 4.23 (t, 2H,  $OCH_2CH_2CH_2CH_3$ ). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>): dimer  $\delta$  13.53  $(OCH_2CH_2CH_2CH_3),$ 18.83  $(OCH_2CH_2CH_2CH_3),$ 34.02 ( $OCH_2CH_2CH_2CH_3$ ), 67.37 ( $OCH_2CH_2C_2CH_3$ ); trimer  $\delta$  13.36 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 18.19 (OCH<sub>2</sub> CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 33.35 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 72.59  $(OCH_2CH_2C_2CH_3)$ . <sup>27</sup>Al-NMR  $(C_6D_6)$ :  $\delta$  94  $(\omega_{1/2} =$ 560 Hz) ppm. Crystallization from hexane leads to precipitation of white crystals of  $[Cl_2Al(\mu-O^nBu)_2]_3Al$ (**3c**) with 47% yield (1.30 g).

Anal. for  $C_{24}H_{54}Al_4Cl_6O_6$ , Calc. (Found): C, 37.96 (38.08); H, 7.17 (7.02); Al, 14.21 (14.51); Cl, 28.01 (27.66)%.  $M_w$  (cryoscopically in benzene): 745, Calc. 759.32.

<sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  0.76 (t, <sup>3</sup>J = 7.6 Hz, 3H; OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.16 (m, <sup>3</sup>J = 7.6 Hz, 2H, OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.93 (m, <sup>3</sup>J = 7.6 Hz, 2H, OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 3.92 (dt, <sup>2</sup>J = 10.5 Hz, <sup>3</sup>J = 5.9 Hz, 1H, OCH<sub>2</sub>CH<sub>2</sub>C<sub>2</sub>CH<sub>3</sub>), 4.27 (dt <sup>2</sup>J = 10.5 Hz, <sup>3</sup>J = 5.9 Hz, 1H, OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$ 13.53 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 19.03 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> CH<sub>3</sub>), 34.51 (OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 66.89 (OCH<sub>2</sub>CH<sub>2</sub> CH<sub>2</sub>CH<sub>3</sub>) ppm. <sup>27</sup>Al-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  94 ( $\omega_{1/2} = 560$  Hz), 6 ( $\omega_{1/2} = 103$  Hz) ppm.

### 4.5. Reaction of $MeAlCl_2$ with <sup>i</sup>BuOH

To the solution of MeAlCl<sub>2</sub> (2.43 g, 21.5 mmol) in 80 ml of hexane cooled to 0 °C a <sup>*i*</sup>BuOH (1.59 g, 21.5 mmol) in 50 ml of hexane was added. The reaction mixture was warm up to r.t. and stirred for 24 h. The solution was decanted and solvent evaporated in vacuo giving white solid of <sup>*i*</sup>BuOAlCl<sub>2</sub> (4a) (3.57g) in 97% yield.

Anal. for C<sub>4</sub>H<sub>9</sub>AlCl<sub>2</sub>O, Calc. (Found): C, 28.10 (28.51); H, 5.30 (5.11); Al, 15.78 (15.94); Cl, 41.46 (40.97)%.  $M_{\rm w}$  just after synthesis (cryoscopically in benzene): 366 (n = 2.14), 7 days later 515 (n = 3.01), Calc. 171.00.

<sup>1</sup>H-NMR (C<sub>6</sub>H<sub>6</sub>): dimer  $\delta$  0.62 (d, <sup>3</sup>*J* = 6.6 Hz, 6H; OCH<sub>2</sub>CH(*CH*<sub>3</sub>)<sub>2</sub>, 1.62 (m, <sup>3</sup>*J* = 6.6 Hz, 1H, OCH<sub>2</sub>*CH*CH<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>), 3.41 (d, <sup>3</sup>*J* = 6.9 Hz, 2H, O*CH*<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>27</sup>Al-NMR (C<sub>6</sub>H<sub>6</sub>):  $\delta$  94 ( $\omega_{1/2}$  = 844 Hz).

<sup>1</sup>H-NMR (C<sub>6</sub>H<sub>6</sub>): trimer  $\delta$  0.73 (d, <sup>3</sup>*J* = 6.6 Hz, 6H, OCH<sub>2</sub>CH(*CH*<sub>3</sub>)<sub>2</sub>), 2.16 (m, <sup>3</sup>*J* = 6.6 Hz, 1H, OCH<sub>2</sub>*CH* (CH<sub>3</sub>)<sub>2</sub>), 4.18 (d, <sup>3</sup>*J* = 7.6 Hz, 2H, O*CH*<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>): trimer  $\delta$  18.2 (OCH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>, 30.33 (OCH<sub>2</sub>*CH* (CH<sub>3</sub>)<sub>2</sub>), 78.34 (O*CH*<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>27</sup>Al-NMR (C<sub>6</sub>H<sub>6</sub>):  $\delta$  94 ( $\omega_{1/2}$  = 720 Hz).

Seven days later in <sup>1</sup>H- and <sup>27</sup>Al-NMR spectra signals of  $[Cl_2Al(\mu-O^iBu)_2]_2AlCl$  (**4b**) appeared. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  0.74 (d, <sup>3</sup>J = 6.6 Hz, 6H, (OCH<sub>2</sub>CH(*CH*<sub>3</sub>)<sub>2</sub>, 1.95 (m, <sup>3</sup>J = 6.6 Hz, 1H,OCH<sub>2</sub>*CH*(CH<sub>3</sub>)<sub>2</sub>), 3.70 (d, <sup>3</sup>J = 7.2 Hz, 2H, O*CH*<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>). <sup>27</sup>Al-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  94 ( $\omega_{1/2}$  = 720 Hz), 45 ( $\omega_{1/2}$  = 300 Hz).

#### 4.6. Reaction of MeAlCl<sub>2</sub> with <sup>s</sup> BuOH

<sup>*s*</sup>BuOH (1.62 g, 21.8 mmol) in 50 ml of hexane was added to cooled solution to 0 °C of MeAlCl<sub>2</sub> (2.46, 21.8 mmol) in 80 ml of hexane. The reaction mixture was allowed to warm up to ambient temperature and stirred for 24 h. A solvent was removed in vacuo giving white solid (3.59 g) of <sup>*s*</sup>BuOAlCl<sub>2</sub> (**5a**), yield 96%.

Anal. for C<sub>4</sub>H<sub>9</sub>AlCl<sub>2</sub>O, Calc. (Found): C, 28.10 (28.33); H, 5.30 (5.14); Al, 15.78 (16.01); Cl, 41.46 (40.99)%.  $M_w$  (cryoscopically in benzene): 340, Calc. 171.00. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  0.56 (t, <sup>3</sup>J = 7.4 Hz, 3H, OCH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub>), 1.09 (d,  ${}^{3}J = 6.3$  Hz, 3H,  $OCH(CH_3)CH_2CH_3)$ , 1.31 (m,  ${}^{3}J = 7.4$  Hz, 1H,  $^{3}J = 7.4$  Hz,  $OCH(CH_3)CH_2CH_3)$ , 1.59 (m, 1H, OCH(CH<sub>3</sub>) $CH_2$ CH<sub>3</sub>), 3.87 (m, <sup>3</sup>J = 6.3 Hz, 1H.  $^{13}$ C-NMR (C<sub>6</sub>D<sub>6</sub>):  $OCH(CH_3)CH_2CH_3).$ 9.50 δ  $(OCH(CH_3)CH_2CH_3), 21.60 (OCH(CH_3)CH_2CH_3),$ 31.64 (OCH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub>), 79.23 (OCH(CH<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>). <sup>27</sup>Al-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  93 ( $\omega_{1/2} = 507$  Hz).

## 4.7. Reactions of MeAlCl<sub>2</sub> with <sup>t</sup>BuOH

To the cooled to 0 °C solution of MeAlCl<sub>2</sub> (5.82 g, 51.5 mmol) in 100 ml of hexane <sup>t</sup>BuOH (3.81 g, 51.5 mmol) in 50 ml of hexane was added. The reaction mixture was allowed to warm up to r.t. and stirred for 24 h. The solution was decanted and solvent removed in vacuo giving light-yellow solid (3.96g) of <sup>t</sup>BuOAlCl<sub>2</sub> (6a), yield 45%.

Anal. for C<sub>4</sub>H<sub>9</sub>AlCl<sub>2</sub>O, Calc. (Found): C, 28.10 (28.41); H, 5.30 (5.50); Al, 15.78 (15.55); Cl, 41.46 (41.10)%. <sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  1.25 (C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>): δ 30.78 (C(CH<sub>3</sub>)), 84.25 (C(CH<sub>3</sub>)<sub>3</sub>). <sup>27</sup>Al-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  90 ( $\omega_{1/2}$  = 150 Hz).

# 4.8. Reactions of MeAlCl<sub>2</sub> with <sup>t</sup>BuCH<sub>2</sub>OH

To solution of MeAlCl<sub>2</sub> (2.26 g, 20.0 mmol) in 60 ml of hexane cooled to  $0 \,^{\circ}\text{C}$  <sup>t</sup>BuCH<sub>2</sub>OH (1.76 g, 20.0 mmol) was added. The reaction mixture was allowed to warm up to r.t. and stirred for 24 h. The solvent was evaporated to give white solid of  ${}^{t}BuCH_{2}OAlCl_{2}$  (7a) with 94% yield (3.47 g).

Anal. for C<sub>5</sub>H<sub>11</sub>AlCl<sub>2</sub>O, Calc. (Found): C, 32.46 (32.41); H, 5.99 (6.09); Al, 14.58 (14.41); Cl, 38.32 (37.61)%.  $M_{\rm w}$  (cryoscopically in benzene): 381, Calc. 185.03.

<sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  0.70 (s, 9H, (OCH<sub>2</sub>C(*CH*<sub>3</sub>)<sub>3</sub>), 3.60 (s, 2H, OCH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C-NMR (C<sub>6</sub>D<sub>6</sub>): δ 25.68  $(OCH_2C(CH_3)_3),$  $(OCH_2C(CH_3)_3),$ 32.03 79.01  $(OCH_2C(CH_3)_3)$ . <sup>27</sup>Al-NMR  $(C_6D_6)$ : 93  $(\omega_{1/2} = 1220)$ Hz).

After 10 days in NMR spectra signal of [Cl<sub>2</sub>Al(µ- $OCH_2Bu^t$ )<sub>2</sub>]<sub>2</sub>AlCl (7b) appeared.

<sup>1</sup>H-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  0.96 (s, 9H OCH<sub>2</sub>C(*CH*<sub>3</sub>)<sub>3</sub>), 3.87 (s, 2H,  $OCH_2C(CH_3)_3$ ). <sup>13</sup>C-NMR ( $C_6D_6$ ):  $\delta$  27.11 (OCH<sub>2</sub>C(*CH*<sub>3</sub>)<sub>3</sub>), 32.90 (OCH<sub>2</sub>*C*(CH<sub>3</sub>)<sub>3</sub>), 78.20 (OCH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>). <sup>27</sup>Al-NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  93 ( $\omega_{1/2}$  = 1220 Hz), 43 ( $\omega_{1/2}$  = 300 Hz).

#### 4.9. X-ray structure determination

Single crystals of 3c and 7a suitable for X-ray diffraction studies were placed in a thin walled capillary tubes (Lindemann glass) in an inert atmosphere, plugged with grease and flame sealed. X-ray diffraction data for compound 3c was collected at r.t. on a Siemens P3 diffractometer and for compound 7a on a Kuma KM4 diffractometer. The intensities were recorded in the  $\omega$ - $2\theta$  scan mode and corrected for Lorentz-polarization effects. Crystal data, data collection and refinement parameters are given in Table 4. The structures were solved by direct methods using the SHELXS-97 program [13]. Full-matrix least-squares refinement method against  $F^2$  values was carried out by using the SHELXL-97 [14]. Neutral-atom complex scattering factors were

#### Table 4

Crystal data, data collection, structure solution, and refinement parameters for compounds 3c and 7a.

|                                                | 3c                                                                             | 7a                                                                             |
|------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Empirical formula                              | C <sub>24</sub> H <sub>54</sub> Al <sub>4</sub> Cl <sub>6</sub> O <sub>6</sub> | C <sub>10</sub> H <sub>22</sub> Al <sub>2</sub> Cl <sub>4</sub> O <sub>2</sub> |
| Formula weight                                 | 759.29                                                                         | 370.04                                                                         |
| Temperature (K)                                | 293(2)                                                                         | 293(2)                                                                         |
| Crystal system                                 | Monoclinic                                                                     | Monoclinic                                                                     |
| Space group, number                            | C2/c, 15                                                                       | $P2_1/c$ , 14                                                                  |
| a (Å)                                          | 13.582(5)                                                                      | 7.183(5)                                                                       |
| b (Å)                                          | 13.811(4)                                                                      | 6.551(6)                                                                       |
| c (Å)                                          | 21.578(8)                                                                      | 18.783(16)                                                                     |
| β(°)                                           | 90.69(3)                                                                       | 93.49(7)                                                                       |
| V (Å <sup>3</sup> )                            | 4047(2)                                                                        | 882.2(13)                                                                      |
| Z                                              | 4                                                                              | 2                                                                              |
| $D_{\rm calc} ({\rm g \ cm^{-3}})$             | 1.246                                                                          | 1.393                                                                          |
| Absorption coefficient $(mm^{-1})$             | 0.542                                                                          | 0.763                                                                          |
| F(000)                                         | 1600                                                                           | 384                                                                            |
| Crystal size (mm)                              | 0.80	imes 0.40	imes                                                            | 0.68 	imes 0.36 	imes                                                          |
|                                                | 0.20                                                                           | 0.12                                                                           |
| $2\theta$ Range (°)                            | 2.1-25.0                                                                       | 2.2 - 25.0                                                                     |
| Radiation                                      | Mo- $K_{\alpha}$ ( $\lambda$ =                                                 | = 0.71073 Å)                                                                   |
| Measured reflections                           | 3739                                                                           | 1531                                                                           |
| Unique reflections                             | 3578 ( $R_{int} =$                                                             | 1494 ( $R_{int} =$                                                             |
|                                                | 0.019)                                                                         | 0.066)                                                                         |
| Data/parameters/restraints                     | 3578/204/26                                                                    | 1494/96/0                                                                      |
| Reflections with $I > 2\sigma(I)$              | 2299                                                                           | 1155                                                                           |
| $R_1, wR_2 (I > 2\sigma(I))^{a}$               | 0.0498, 0.1330                                                                 | 0.0636, 0.1803                                                                 |
| $R_1$ , $wR_2$ (all data) <sup>a</sup>         | 0.0826, 0.1501                                                                 | 0.0796, 0.1991                                                                 |
| Goodness-of-fit $(S)^{b}$                      | 1.051                                                                          | 1.081                                                                          |
| Weights $a, b^{c}$                             | 0.080, 1.17                                                                    | 0.156, 0.068                                                                   |
| Largest difference peak and hole (e $Å^{-3}$ ) | +0.35  and  -0.28                                                              | +0.67 and -0.55                                                                |

<sup>a</sup>  $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_c|, wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]\}^{1/2}.$ <sup>b</sup> Gof =  $S = \{[w(F_o^2 - F_c^2)^2]/(n-p)\}^{1/2}$  where *n* is the number of reflections and p is the total number of parameters refined. <sup>c</sup>  $w^{-1} = \sigma^2 (F_0^2) + (a \cdot P)^2 + b \cdot P$ ; where  $P = (F_0^2 + 2F_c^2)/3$ .

employed [15]. As resulted from the refinement process of 3c, the terminal ethyl group [-C(11)-C(12)] in one of the *n*-butoxy ligand was disordered over two sites. The disorder was modeled in terms of two sets of atoms with similarity restraints concerning chemically equivalent C-C distances. The refined final occupancy factor for the major conformer was equal to 0.744(9). In both structures, all non-hydrogen atoms were refined with anisotropic displacement parameters, including the partial occupancy atoms of the disordered part of the molecule 3c. Hydrogen atoms were introduced at geometrically idealized coordinates and allowed to ride on their parent C atoms. ORTEP drawings were made using ORTEP3 for Windows [16].

#### 5. Supplementary material

Listings of crystal and refinement data, atomic coordinates, bond distances and angles, thermal parameters are available from Cambridge Crystallographic Data Centre, CCDC nos. 208950 and 208951 for compounds **3c** and **7a**, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc. cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

#### Acknowledgements

The authors thank to State Committee for Scientific Research for financial support of this work (Grant No. PZB-KBN 15.09/T09/99/01i).

#### References

- [1] (a) H. Schmidbaur, H. Hussek, F. Schindler, Chem. Ber. 97 (1964) 255;
  - (b) H. Schmidbaur, Angew. Chem. 77 (1965) 169;
  - (c) W.G. Joung, W.H. Hartung, F.S. Krossley, J. Am. Chem. Soc. 58 (1936) 100;
  - (d) V. Sharman, M. Simard, J.D. Wuest, Inorg. Chem. 30 (1991) 579;
  - (e) M.D. Healy, J.W. Ziller, A.R. Barron, Organometallics 11 (1992) 3041;

(f) S. Schulz, H.W. Roesky, M. Noltemeyer, H.G. Schmidt, J. Chem. Soc., Dalton Trans. (1995) 177;

(g) A. Pietrzykowski, T. Skrok, S. Pasynkiewicz, M. Brzoska-Mizgalski, J. Zachara, R. Anulewicz-Ostrowska, K. Suwińska, L.B. Jerzykiewicz, Inorg. Chim. Acta 334 (2002) 385;

- (h) W. Ziemkowska, S. Pasynkiewicz, R. Anulewicz-Ostrowska,M. Fraczak, Main Group Met. Chem. 23 (2000) 169;
- (i) P. Sobota, P.J. Utko, A.I. Brusilovets, L.B. Jerzykiewicz, J. Organomet. Chem. 553 (2000) 379.
- [2] T. Gelbrich, U. Dümchen, P. Jörchel, Acta Crystallogr C55 (1999) 856.
- [3] K.B. Starowieyski, S. Pasynkiewicz, M. Skowrońska, J. Organomet. Chem. 31 (1971) 149.
- [4] S. Pasynkiewicz, K.B. Starowieyski, M. Skowrońska-Ptasińska, J. Organomet. Chem. 52 (1973) 269.
- [5] (a) M. Skowrońska-Ptasińska, K.B. Starowieyski, S. Pasynkiewicz, J. Organomet. Chem. 160 (1978) 403;
- (b) J.A. Jegier, D.A. Atwood, Bull. Soc. Chim. Fr. 133 (1996) 965.
  [6] W. Kosińska, K. Żardecka, A. Kunicki, M. Bolesławski, S. Pasynkiewicz, J. Organomet. Chem. 153 (1978) 281.
- [7] A.R. Kunicki, A. Orechin, J. Zachara, Main Group Met. Chem. 21 (1998) 365.
- [8] D.A. Atwood, J.A. Jegier, S. Liu, D. Rutherford, P. Wei, R.C. Tucker, Organometallics 18 (1999) 976.
- [9] M.-A. Munoz-Hernandez, P. Wei, S. Liu, D.A. Atwood, Coord. Chem. Rev. 210 (2000) 1 (and references therein).
- [10] B. Neumüller, Chem. Soc. Rev. 32 (2003) 30 (and references therein).
- [11] A.I. Yanovsky, V.A. Kozunov, N.Y. Turova, N.G. Furmanova, Y.T. Struchkov, Dokl. Akad. Nauk SSSR 244 (1979) 119.
- [12] J.H. Rogers, A.W. Apblett, W.M. Cleaver, A.N. Tyler, A.R. Barron, J. Chem. Soc., Dalton Trans. (1992) 3179.
- [13] G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
- [14] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.
- [15] A.J.C. Wilson (Ed.), International Tables for Crystallography, vol. C, Kluwer Academic Publisher, Dordrecht, 1992.
- [16] L.J. Farrugia, ORTEP-3, J. Appl. Crystallogr. 30 (1997) 565.